HEBO

NILA BANERJEE, SYDNEY CHOI, DANIELLE HU,
STEPHANIE TRUONG, KATIE WILLIAMS

HCI CAPSTONE FINAL REPORT, SPRING 2018

UPMC

LIFE CHANGING MEDICINE

\\

CONTENTS

3 Introduction

3 Executive Summary

4 Research and Prototyping
7 Hebo

12 Next Steps

17 Tools

17 Overview
18 Logistics
19 DialogFlow
28 Mobile App

34 Appendix

After undergoing Mohs surgery, patients often have questions and concerns about their
post-operative treatments. Most of the post-operative instructions are given right after
the surgery and most of the time they are rushing with adrenaline and at times slightly
disoriented. Therefore, they cannot retain all the information that the nurses tell them
at the time of the procedure. Therefore, patients require support from clinical staff over
the phone or in the clinic to address common concerns. Moreover, staff members often
have to dedicate significant portions of time to communication information already
made available to patients.

Our team has been working to find a solution that will better assist patients during this
post-operative period. Our research was first geared towards understanding the
perspectives of both the hospital staff and skin surgery patients, while uncovering what
the post-operative care process entails.

In order to successfully address the post-operative concerns of skin cancer patients,
we will work to understand the patient mindset, identify the challenges that patients
face, and explore media that are optimal for communicating relevant post-operative
solutions. This will help us create a platform that will convey medical instructions in a
personalized and comprehensible manner, thereby reducing the volume of low priority
calls taken by the hospital staff and streamlining emergency concerns.

Patients recovering from skin cancer surgery often do not completely understand and
have numerous concerns about their post-operative care, which results in clinicians
receiving a high volume of redundant and low-priority phone calls. Our team was
tasked with developing a post-operative care assistant that could handle these
concerns and act as a constant companion throughout a patient’'s recovery. We
conducted numerous stages of research and prototyping to finally create Hebo, an app-
based chatbot that uses voice, text, and images to convey care information. Here, we
overview how we arrived at our solution, as well as how it serves as a proof of concept
to convert confusing and overwhelming medical information into easily comprehensible
pieces of knowledge.

In scoping our problem, we found that there were two major groups of stakeholders:
hospital staffs. To find a solution that would balance their needs, we need to
understand the perspectives on post-operative care for both of these groups.
Therefore, we chose research methods that would best convey not only the breakdowns
in the care process, but also the mindsets of both patients and nurses.

We started with a comprehensive literature review to not only understand the current
post-operative care process, but also to gain knowledge on pain management and the
relationship elderly people have with current technologies. Information from our
literature review helped supplement our first-hand findings and filled in gaps on
aspects we could not directly test. Next, we conducted a heuristic analysis, evaluating
a prototypical app Dr. Carroll previously developed to guide patients through their
post-operative care using Nielsen's principles. To gain a more thorough understanding
of what patients and clinical staff undergo, we performed numerous contextual
inquiries at the UPMC Presbyterian and St. Margaret clinics, observing surgery, lab
work, patient guidance, and more. Our team shadowed patients, nurses, and doctors as
they went about their tasks to identify current processes and breakdowns. As a part of
our diary study, we provided each surgical patient within our study's timeframe with a
notebook to record their post-operative journey, which they were asked to fill out from
the evening of their surgery until their one week follow-up appointment. We intended to
discern what problems patients commonly face after surgery and what actions they
take to address any concerns they have. Finally, we conducted interviews with patients,
caretakers, hospital staff, and doctors to recognize the perspectives of each
stakeholder and gather information from all relevant parties. For more details on our
research process, please refer to our research report.

From our initial research, these were our insights:

1. Doctors think that they are providing patients with all of the information they
need, but this is not always the case.

2. Patients look for greater reassurance and personalized care from the post-
operative process.

3. Nurses feel that some post-operative calls are redundant.

4. The predominant demographic of skin cancer patients, the elderly population,
calls for an emphasis on accessibility and simplicity.

From our research insights, we had multiple brainstorming sessions to come up with a
list of solutions. We narrowed down our ideas to 2 possible solutions which was the
chatbot and the interactive tutorial on post-operative care where we parallel
prototyped. From there, we took the best features from each prototype to create Hebo,
a chatbot with limited conversation topics designed to answer questions specific to the
patient's surgery experience. We had multiple user testing sessions and here are the
consolidated list of our insights:

From our user testing with our prototype chatbot, it
was revealed that users became confused when trying to remember and understand
lengthy directions given to them by a chatbot. Therefore, it is important to keep the
instructions short and easy to understand. Whenever it is appropriate, having visual
answers will help patients understand the instructions.

It is unpredictable when patients will want to know
certain information about their post-operative care. They do not feel like information is
relevant until it becomes a pressing issue or problem for them. Therefore, information
needs to be accessible whenever the patient needs it. If Hebo cannot answer the
questions, it must provide a way for patients to find their answers.

Patients are more
likely to trust a tool that is more closely linked to their doctor or comes directly out of
their office. Our users requested confirmation and reassurance that the answers
coming from the chatbot were coming from their own doctor. Therefore, the
introduction and delivery of Hebo must come from the doctor's office to ensure trust in
Hebo.

Through our
testing sessions, users find Hebo more valuable if its knowledge base cover common
questions that extend beyond the post-operative instructions. Another approach to
extract value from Hebo that differentiates from the post-operative sheet is to make
Hebo more dynamic and interactive than the static state of the sheet. With a dynamic
interaction, Hebo can help the user parse through uncertainties that might not be
addressed from their initial read of the post-operative care instructions.

Inaccurate responses can be addressed with more thorough programming
of Hebo. Currently we use Dialogflow to build out Hebo; so in this case, we need to be
more extensive and detailed with our training phrases for each intent. The more we
train our responses, the less Hebo will get confused about matching the user’s
question to the appropriate response. Both tangential and generic responses can be

addressed if we add more specificity to our chatbot. Solving for specificity should also
solve issues with inaccuracy: the more we know what the user is asking, the better we
can answer his or her question.

For future iterations
of Hebo, it is important to focus on including more recommendations or insights that
are personalized to the user. Knowing what types of information to store may not be
trivial. Storing basic information about the surgery is a good starting point, but
information revolving medical histories (i.e. allergies, medication, etc.) may not be
feasible to program into Hebo since they are more serious recommendations. Looking
into the complications of such recommendations and scoping these down to a useful
subset will be a large part of this design process. In addition, it might be necessary to
design the interaction of inputting user data into the application. This will likely either
be the user putting this information in themselves, or a healthcare provider inputting
this information for the patient during the onboarding session. Understanding the
willingness of both stakeholders in this input phase is crucial in deciding what would
be the best solution for this interaction.

For the voice aspect of Hebo, we should make the listening and talking
interaction between the user and the agent as smooth as possible. This means making
Hebo more patient so that the user is not cut off early, making Hebo better convey to
the user its state (i.e. listening), and maybe even helping the user feel more natural
when they ask questions. One way to solve some of these issues would be to have a
walkie-talkie interaction: instead of the user pressing the microphone icon once and
having Hebo decide when the user stopped talking, the user can press and hold the
microphone icon to indicate that he or she is speaking. In general, we should prioritize
testing, designing, and developing for usability, especially with our target demographic.

Please refer to our previous reports for more detailed information regarding our
research insights, low-fidelity prototype, and mid-fidelity prototype
development.

Our chatbot is designed to be a personal healthcare companion and assistant that
answers any questions the patient may have about bleeding and wound care. We found
in our research that patients need reassurance to questions that they may already know
the answers to. Hebo helps to reassure patients by being available to answer any
questions the patient may have at all times and thereby simultaneously reduces the call
load of the nurses. In order to accomodate our limited time in the project, we narrowed
the scope to questions that concern bleeding, wound care, and swelling on surgery
sites on the neck and scalp. Based on conversations with nurses and looking at a few
nurse call logs we estimate that although small this scope will address around 25% of
the post-operative calls from patients within 48 hours of their surgery.

Improvements for High-Fidelity Prototype

As outlined in our research insights, visuals were found to be

extremely helpful in communicating certain ideas to patients. I
However, we wanted to maintain a balance of including simple and with a bandage or with

. A . . gauze. Which would
quick verbal answers and introduce more detailed visual answers you prefer, bandage or

gauze?

when it was helpful. We also realized that having real photos was
more effective than having drawings since patients are able to
connect more with the visuals. As per the recommendation of our

bandage

How to change dressing

client, we determined that within our scope the questions that Forfiue you Wi need e0v.ype
of bandage and dressing that

required a visual answer was how to change your dressing, how R S
much vaseline to use, and how to apply pressure on a wound. In f‘w
order to construct these answers, we went to the clinic and had the } '

. . . == .-."--
nurses perform a think-aloud of how they would instruct a patient) ,

e

normally and we documented the process with pictures along the
way. We found it was helpful to record audio of the nurses’ voices

and transcribe them later into steps that were easy to follow. | < o o |

Effective medical recommendations require at least basic knowledge of the patient's
history. We knew that the answers Hebo gave must be personalized to the patient in

order to provide the best care. To emulate this, Hebo takes into consideration the date,
time, and surgery site of the patient’'s procedure when responding to questions. For
example, when the patient asks, “When should | change my dressing?” Hebo will
calculate the appropriate time based on when the surgery was initially performed.

To make a robust solution we knew that Hebo's knowledge base must extend off of the
post-operative care sheet. To generate a pool of possible questions and answers that
were in our scope we first compiled a list of possible questions based off of the post-
op sheet for dissolvable sutures as a starting point. Then, we consulted the nurses and
doctors in addition to what we found in our diary studies to identify common questions
to expand Hebo. This was an iterative process, and we had our client and nurses check
on our progress and advise if they thought any additional questions should be
included. To summarize our question and answer database, we made a logic tree using
post it notes to identify the main branches and streamline the questions that pointed to
the same question (Appendix #). Finally, we imported the questions and answers to
DialogFlow which is outlined in further detail in a later section of this document. In
addition to expanding Hebo's knowledge base beyond the sheet, we also incorporated
a useful feature that helps the patient put the appropriate amount of pressure on their
wound by incorporating a built in timer. Features such as these help to make Hebo a
solution that bridges the gap between the nurses and doctors and provide more
comprehensive care.

Of course, every recommendation Hebo makes must be thoroughly reviewed by a
doctor to ensure accuracy. We gave access to our digital logic tree to our client for
review in addition to meeting in person to talk through the recovery process and ensure
Hebo's answers were appropriately worded and accurate. Furthermore, we verified with
nurses and doctors that our pool of questions were low priority and easy to answer.
While our goal is to allow Hebo to help reduce some of the nurses’ call log, we did not
want Hebo to address high risk questions that require a doctor's attention.

One problem we encountered in earlier stages of development was that Hebo would not
correctly answer the patient’'s more specific questions. We wanted to fix this to not only
provide the patient with the answers they need but also make the conversation more
fluid and dynamic. In order to increase the specificity of answers, we added more

content into DialogFlow and also trained Hebo intensively using DialogFlow's internal
training tool. Additionally, we introduced follow up questions to make sure Hebo got at
the core of what the patient was asking and ensure that Hebo was providing the right
recommendations. For example, after a patient asks something like “Should | see blood
on my bandage?” Hebo will first respond by asking “Can you confirm whether or not
you are bleeding right now?" before answering the patient's original question.

Design

The design of Hebo is very simple. To accomodate for the lack of technological
expertise in the elderly population, we focused on making the Ul as simple as possible.
As such, all the navigation is what android design guidelines refer to as in-app
navigation in which there are no components such as navigation drawers or tabs. Like
the calculator app, there are very few buttons and virtually no need to navigate through
different components. There are three main components of Hebo's design: onboarding,
the conversation page, and the patient information page.

For Hebo's onboarding, we knew it was extremely important to establish trust and also
educate the user on how to use Hebo since most users are unfamiliar with using this
type of technology. We incorporated three simple screen that introduced the user to
Hebo, explained the scope of Hebo's knowledge bank, and instructed the user how to
interact with Hebo respectively. Additionally, we automatically prompted the user to
populate their procedure site, date, time, and clinic on the patient information page and
also agree to a consent form. Due to the technological difficulties of creating Hebo's
knowledge base and building out a scalability plan for Hebo's future, the team did not
fully flesh out Hebo's design. We recommend future teams spend time iterating on the
overall design, especially the onboarding process to make sure that it is effective in
teaching users how to use the app and what questions to ask.

Tell me about your
procedure!

Just tap and ask

Hi, I'm Hebo

fmyou
he:

.....

Got t! Save

The conversation page serves as the hub of the app and where Hebo
lives. Users who have already gone through the onboarding stage will

e
be directed to this page as their home screen and can immediately

start speaking to Hebo. Users simply tap on Hebo's icon to begin

talking. We recommend that future iterations of the design include an

animation such that the user knows when Hebo is listening and when

Hebo is processing and preparing an answer. In addition to the back

and forth conversation bubbles that appear, visual answers are also

embedded within the conversation and the user simply needs to scroll

up to view the content.

The patient information page is introduce to the user as part of the

onboarding and then appears as a button on the top right corner of the Tell me about your
conversation page. Its purpose is to give the user the ability to update procedre
their patient information whenever necessary so Hebo can update

their answers accordingly. This is especially important for patients who ony

undergo multiple procedures.

We made Hebo an android app since our client has an Android
device. Ideally, Hebo could be optimized for both iOS and Android
platforms to reach a broader audience in the future.

Save

User Testing and Results

We performed more focused users testing with our high fidelity prototype. Our target
audience included patients from the clinic, in addition to the nurses and other potential
users who were above the age of 60. Participants were invited to spend some time
interacting with Hebo while performing a think-aloud and then follow-up in a brief
interview. The main insights we gained from testing are as follows:

We found that although
the interaction design for Hebo is very simple, users still had difficulty remembering to
push the button before they started to speak. Especially for users who did not have
smartphones or were not accustomed to using such technology, we found that simple
gestures such as scrolling up to see the remainder of the visual answers were not

intuitive to our user population. We recommend incorporating popup messages and
additional scaffolding to help remind the user how to interact with the app.

As we had anticipated, sometimes
the user would ask questions that Hebo was completely unprepared for. These
questions were either highly specific such as asking Hebo is a certain brand of soap
was acceptable to shower with or questions that did not pertain to bleeding, wound
care, or swelling. In order to combat this, Hebo has a default message when it doesn’t
understand. Hebo will ask the user to rephrase the question or simply say that he does
not know how to answer that question.

As the target population is mostly
above the age of 60, we found it was important to continuing iterating on the design
and overall functionality to compliment accessibility features. Examples include font
size, the onboarding process, and speed of speech. No matter the future iterations of
Hebo that should occur, accessibility should remain a high priority.

Finally, we found that overwhelmingly our users found
significant value in Hebo. Actual patients thought Hebo was helpful and easy to use
and the nurses and doctors thought Hebo was accurate and could help reduce the
volume of low priority calls. With this in mind, we can justify further development of
Hebo past the lifecycle of this team’s work and hopefully impact patients’ recovery
process in multiple clinics.

Our team has worked to create a proof of concept project that provides evidence that a
personal health bot, Hebo, will help decrease the amount of patient calls. We believe
that in order to successfully carry out the remainder of this project, our client will need
to pursue work with future student consultant teams to focus on further refining Hebo,
to expand the scope of the Hebo functionalities, and to create a feasible scalability
plan that allows the introduction of Hebo to multiple different clinicians serving Mohs
surgery patients. Figure A depicts a one-year projection of the project given this
timeline.

‘ Expanding Hebo's Scope ’

‘ Hebo Conversation Refinement

‘ Hebo Scalability Plan

Figure A

Expanding Hebo’s Scope

Currently, we have limited Hebo's scope to Bleeding, Swelling, and Wound Care. This
has allowed us to focus our proof of concept on the most common problems that
patients face following their Mohs surgery. In doing so we have been able to limit the
amount of potential questions Hebo answers and refine the interactions and logic that
Hebo uses to answer these questions. In order to build out a successful and
comprehensive chatbot interface for patients, Hebo's scope must be expanded to all
aspects of patient care.

In our research, we discovered a set list of topics that cover the majority of the
questions asked by patients at the UPMC Presbyterian and UPMC St. Margaret
Dermatology offices. The following is a list of question categories that cover most of
the patient concerns identified.

. Bleeding . Redness

. Swelling . Medication

. Wound Care . Diet

. Infection . Activity

. Pain . Spitting Stitches
. Bruising . Emergency

Expanding Hebo's scope will mean covering all of the questions that we found in these
question categories. Many of the documents from our research, including our call logs,
diary studies, and interview notes, already have many example questions and concerns
from patients. Future teams can use these resources to continue this research and
discover more questions that fall into these Question Categories.

As our research progressed, we discovered that some patient questions were not fully
addressed by our set of Question Categories. Particular issues such as dental concerns
or travel concerns fell into an Other category that we were not able to fully cover in our
research and prototyping. This forced us to recognize that Hebo may be asked quite a
few questions that don't fit into our standard question model. We recommend that
future teams continuing work on this project take advantage of the following tools to
expand Hebo's scope and discover all concerns that patients may have:

Many of the patient call logs held by the UPMC Dermatology office are confidential;
however, we were able to create a collection of patient call topics by querying staff

about the general questions, topics, and concerns that patients had called in about

over the past few weeks. This allowed us to build up a more realistic list of calls that
patients have been making to the office.

We used contextual inquiries to observe nurses going about their routine. These
inquiries gave us the opportunity to prompt nurses to recall their most recent patient
calls and what questions were asked. We were also able to observe how nurses dealt
with the patient calls they received and the process they followed to answer patient
questions. A particularly useful resource we found during this study was the triage
nurse. Many clinics have a triage nurse who focuses on answering patient calls
throughout the day. We found that he or she is usually able to recall more details about
the post-operative calls made to the office due to the fact that the triage nurse's

primary role revolves around answering patient questions and resolving any post-
operative complications.

As described in our preliminary research report, our diary study was a significant way
that we collected patient concerns and questions following the day of surgery. We
believe that this method helped us discover questions that our client previously was
not aware that patients had. This method also engaged patients and we found that our
subjects were excited about participating in a study where they felt that their opinions
were being heard.

Diary Studies can be used as a way to build out the patient question database. To help
future members of this project use diary studies to gain this insight in an efficient
manner, we have supplied a template for the diary study notebooks (Appendix A).
During our research phase, these diary studies took roughly two weeks to complete per
subject. Our timeline for the research worked as follows:

. Before the Study: Create the diary using small 5’ x 3" notebooks and the
templates included with this report.

. Day of Patient Surgery: Distribute the diary to the patient along with a brief
walkthrough of how to use this diary during their post-operative recovery
period. Remind the patient to bring the diary study back to the office during
their follow-up visit.

. Patient Follow-up Visit: Retrieve the diary study with the patient. Look through
the diary. If time allows, clarify any points of extreme pain, concern, or confusion
with the patient.

. Upon Receiving the Diary: write any clarification points concerning the patient’s
diary study, take note of any comments made during the follow-up visit, take
note of the patient's general demographic.

In our experience, the rate of diary returns depended mainly on the onboarding process
between doctor or nurse and patient. Handing out the diary to patients who appear
interested in the study and understanding of the process yielded a higher return rate of
the diaries.

Hebo Conversation Refinement

Our user testing found Hebo to be comprehensive, but somewhat awkward in
conversation. Here are some suggestions that we believe can be used to enhance user
interactions with Hebo and make it a more personal companion.

As teams are able to expand Hebo's scope, they can use Dialogflow to input new
intents into the system. Each new addition and any revisions to the scope should be
reviewed with the client. Following review and addition of new topics that Hebo can
address, we recommend further user testing focused on these new additions. This will
allow the team to understand how any updated version of Hebo reacts to the various
ways that a user can ask a question and maintain a dialog. Our client was able to give
us access to many potential users in order to carry out this user testing. We also
recommend pulling from other potential user bases around the same age range. While it
is best to test with potential users of the product, many of the flaws in the system can
be highlighted with general users. We made an effort to provide breadth and depth in
our user testing in order to increase the possible outcomes and conversations that we
could observe between users and Hebo.

In our experience, performing rounds of iterative user testing and development was
also a successful step in refining the conversation experience with Hebo. Bugs could
be noticed fairly quickly with two or three 15 minute user tests. By performing short
sprints of user testing and then fixing any bugs identified before the next round of user
tests, we were able to have a more efficient user testing process.

With each intent added to dialog, a new conversation tree must be created. This
conversation tree must account for all possible interactions the user has with Hebo.
Our team noticed that the more we increased the scope of Hebo, the more overlap
there could be in the training phases used for each intent. As teams work to increase
the scope of Hebo, we also recommend to limit the amount of training phases possible
for each intent. In our research we found that three to five training phrases was ideal
for each intent. A more effective way of ensuring Hebo's comprehension of the user
was to focus on entity creation and the use of synonyms in Dialogflow.

A final recommendation we have in refining Hebo's conversation skills is to increase the
companionship, sympathy, and emotional support that Hebo provides to users. Our
initial research showed that many users make postoperative calls because they are
looking for greater support and reassurance in their recovery period. A more
personalized Hebo can be created by focusing on two different aspects of the
conversation: positive phrases and personalized check-ins. The use of positive phrases
and words of encouragement is practiced by many nurses and doctors in their phone
calls already. Providing personal statements of reassurance like “you can do it” and
“I'm sorry you're uncomfortable” emphasize Hebo's focus on personal comfort. These
statements should be incorporated with any responses programmed into Hebo's
Dialogflow interface. As the scope of the chatbot grows, this same personality should
be incorporated into all possible Hebo responses. Ultimately, Hebo can truly become a
personal health bot by knowing and anticipating the needs of patients. If Hebo can
remember to follow up on concerns patients have had or monitor the kinds of questions
the patient has, we can understand what interactions the patient is looking for during
their recovery period. Hypothetically, if a team were to focus development on this
personalization, Hebo would be able to predict complications before they happened
and address questions before they were asked by closely monitoring the progress of
the patients post-operative period. Each interaction with Hebo would be logged and
would trigger a reminder for Hebo to follow up with the user in a few hours or the next
day.

Our diary studies also proved to be effective in creating an outlet for patients to voice
their current opinions and emotions. While this action is not only cathartic for the
patient, it also provides meaningful data to doctors and nurses regarding the status of
their patient. Our research proves that the incorporation of a journaling component to
Hebo's conversational skills would be beneficial to both parties.

Ultimately, Hebo's conversational skills should mirror that of a doctor or nurse. Through
the use of contextual inquiries, a team would be able to understand these interactions
in order to better mirror them in Hebo.

Hebo Conversation Refinement

Ultimately, Hebo's success relies on its scalability. In order for this to be a tool that can
be adopted by any doctor practicing Mohs surgery, Hebo needs to be scalable and
customizable to a certain extent. We have foreshadowed an abstract scalability plan
that could potentially be incorporated into a scalable prototype of the Hebo platform.

Hebo's conversation logic can be broken down into categories and fill-in-the-blank
statements. The final, perfect version of Hebo will know all the possible questions a
patient may ask. The answers to these questions may not necessarily be standard
across all dermatology practices. For each question, there must be an answer; however,
the variability of that answer usually only ranges in terms of differences in medication
recommended, time periods, etc. We believe that each answer that Hebo supplies can
be broken down into fill-in-the-blank statements. Future teams have the power to
create an onboarding survey that allows doctors and nurses to answer questions in a
survey about the specific recommendations that their practice gives to patients. With
each question answered, Hebo learns more about the preferences of that practice and
is able to answer a greater percentage of patient questions. After amassing a
significant amount of data from different practices, Hebo would also be able to provide
suggestions on what doctors should recommend based on the most common answers
to these survey questions.

We believe that this scalability plan and the data amassed by Hebo as it is used by
more and more practices is the most valuable component of Hebo. Once Hebo becomes
scalable, it can collect data that can help physicians give better recommendations and
better understand their patients' needs.

Overview

1. Sendsrequests to 1. Receives requests, chooses | 1. Receives POST requests
Dialogflow with appropriate Intent, and from Dialogflow, and
correct parameters returns an appropriate returns the appropriate

2 Handles all mobile response back (handles ' response
aoplication natural language processing| 2. Uses parameters to return
) PP) of request to choose the a more personab|e/
interactions and correct response) customized answer
features 2. Contacts webhook if intent

3. Keeps track of user uses Fulfillment to respond
information to request

System Architecture

DialogFlow

The intricacies of understanding natural language is not an easy task. In order for a
program to determine the difference between the phrases "how do | change my
bandage” and “when can | change my bandage,” a computer needs to understand the
various nuances to how users phrase their questions and requests. Dialogflow is an
online tool that uses machine learning to help with natural language processing. As a
user of Dialogflow, we can create an agent (Hebo) and map out all of the conversations
a user can have with the agent. In our case, conversations would center around a
patient’'s question about his or her post-operative care, and Hebo's responses to those
questions. You can read more about Dialogflow below or on their official
documentation.

To create these conversations, we use Dialogflow’s interface to create intents, entities,
contexts, and fulfillments:

. - every possible response that we wish Hebo to respond with will need an
intent. So a question of "How do | change my bandage?” that needs a visual
response that steps through how to change a bandage will be an intent. Another
intent will be "When can | change my bandage?” which will receive a textual
answer of something along the lines of "you can change your bandage as
frequently as you need, but we recommend at least once a day.” Within each
intent, you can program multiple training phrases, which is a simple way of
programming multiple ways to reach an intent. So a training phrase for "How do |
change my bandage” can be "Help me change my dressing” since both phrases
should lead to the same answer.

. - since words have synonymes, it can help to use entities to make the job
easier. Entities are a way to create synonyms and variables that can be
recognized by the agent. Since “dressing,” "bandage,” and "gauze” are all
similar, you can create an entity that recognizes this relationship. When you
create training phrases, you can create a single training phrase that answers
"how do | change my bandage” instead of three different phrases that each use
a different synonym. Entities can also be created to more easily recognize the
important variables in a phrase. If knowing that a user has “bandage” versus
"gauze" is important to recognize, the use of entities will help classify this
distinction.

- for Hebo to use follow-up questions or be more conversation-like,
the use of contexts is needed. Contexts allow Hebo to understand more about
the conversation and respond accordingly. If Hebo needs to ask a follow-up,
such as "do you have bandage or gauze?” The user can respond with the phrase
"bandage” or “gauze.” This conversational flow makes sense because of the
context of the follow-up. However, if a user opens up the application for the first
time and just says “bandage,” Hebo should actually respond with something
along the lines of, “I'm sorry, | don't understand.” This response comes from the
fact that a conversation that begins with just the phrase "bandage” makes no
sense. What about the bandage? Would the use like to know how to change it,
when to change it, etc. Therefore we need to keep contexts in mind when we
create conversations in Dialogflow.

- the majority of conversations for Hebo can be done under the
Responses tab in an intent. This is because most conversations have a standard
textual response that can be programmed directly using Dialogflow's web
application. However, for more flexible conversations that allow for more
customization, we use fulfillments. Dialogflow allows for fulfillments with a
webhook. You can think of a webhook as a computer somewhere in this world
that you can poke every once in a while with a request. The computer will then
take your request and use its program to return an appropriate response. In this
program, you can use standard APl calls, mathematical operations, and any
other computational power to craft your response. For our case, Hebo uses
information such as when a patient’s surgery was to choose between two
responses to return. For example, those who had the surgery within the last 48
hours should be told to not get the dressing wet, but those who are at the point
of 48 hours later can freely get the dressing wet.

We will step through the creation of an intent in this section. Our intent is related to the
question of whether or not you can take a shower. For Hebo, we have been
programming all of our responses in a particular format:

(@body-parts:body-parts) (@sys.date-time:date-time) [phrase]

@body-parts and @date-time are entities that are used as parameters to tell our
webhook more about the patient. This is an unconventional way of using Dialogflow
that we used because our prototype does not utilize a database. This was therefore the
only way to pass information from our mobile application (which houses information
about the user) to the webhook (which uses this information to customize the

response). In a future development, the use of a database can eliminate this formatting
of training phrases, where the webhook would call an APl or query the database to find
out about the user. [phrase] would be a training phrase that links to the intent. A few
examples for our case would look like this:

(neck) (Feb 2, 2018 at 9 AM) Can I shower
(eyelid) (Feb 2, 2018 at 10 AM) Am I allowed to shower
(cheek) (Feb 9, 2018 at 9 AM) Can I get the dressing wet

Note: Dialogflow handles the matching and formatting of entities for you, so listing
various types of @body-parts is the same as listing one for all of the training phrases
(meaning we could just use “neck” for all of these examples as long as we tag it
properly with the @body-parts entity). The format for @date-time is also handled by
Dialogflow, so we could have just as easily written it like “(2/2/18 at Qam).”

Example: "can-i-shower”

1. Go to Dialogflow's website and click on "Go to Console.” Log into Dialogflow
with the hebochatbot Gmail account (in the Tools:Logistics section of this
report).

2. Logging in should bring you to the “Intents” tab, which should show a list of
Hebo's current intents.

3. We want to create a new intent that involves showering, so click the “Create
Intent” button at the top right corner.

-

@ Dialogflow Intents

Hebo

bleeding-follow . § Google Assistant. G
Entities 9 @, See how it works in Google Assistant. (7

Qv @ Please use test console above to try a
sentence.

Fulfillment

4. We start by naming the intent (Intent Name), since our question is involved in
showering, we can name it “can-i-shower”

5. Now we should think of as many examples of questions or phrases a user can
ask to get to this intent. Add these examples in the "Training Phrases” section,
but also for our case, don't forget to add the parameters about the user’s
surgical area and date of surgery. In order to add entities to your training
phrases, double click or highlight the part of the phrase that is to be coded as
the entity. In our case, we first type out an example such as “(neck) (4/18/18 at

10:28 PM) Can | wash my hair?"” Then we would highlight “neck” and wait for
Dialogflow to prompt for us to select the type of entity. Do this for every entity
and training phrase.

e can-i-shower

Training phrases @ Q A

99 |Add user expressio

99 (lips) (4/18/18 at 10:28 PM) Can | wash my hair?

99 (lips) (4/18/18 at 10:28 PM) can i shower?

99 (lips) (4/18/18 at 10:28 PM) | am trying to shower but | don't know how to without keeping my wound dry
99 (ear) (4/11/18 at 3:32 AM) What is the best way to shower?

99 (mouth) (8/22/18 at 6:43 AM) How should | be showering?

99 (scalp) (4/16/18 at 9:19 PM) How can | shower with my wound?

99 (nose) (4/09/18 at 8:55 PM) What should | do when showering?

99 (ear) (4/11/18 at 8:56 PM) Am | allowed to shower?

99 (back of neck) (4/25/18 at 5:47PM) Can | bathe now?

99 (back of neck) (4/25/18 at 5:47PM) Can i wash my hair?

The "Actions and parameters” section will start to populate with the different
entities that are used in your training phrases. We don’t need to touch this
portion for Hebo, but know that Dialogflow does have extra features that can be
useful to development in the future (such as requiring a parameter). You can
read more about these features here: https://dialogflow.com/docs/actions-and-
parameters.

At this point, we have programmed how Dialogflow will reach this answer, but we
still need to decide how we should respond to this intent. There are three
different types of responses that we can return:

-Simple text response that answers the intent directly. These responses are
general enough that no further action needs to take place.

To do this, just fill in appropriate responses in the Response section of the intent. If

there are multiple responses, Dialogflow will randomly select one to return. You can
also program in parameters into responses using the '$’

Responses @ A

DEFAULT GOOGLE ASSISTANT +

Text response ® 0

1 Yes you can shower!

2 Definitely, please do shower.

ADD RESPONSES

B Set this intent as end of conversation @

- This response needs to reach the webhook for some backend
processing, meaning it likely needs to use information about the user's surgery to
respond.

To do this, scroll to the bottom and turn on the ‘Enable webhook call for this intent’
option. If this switch is enabled, whenever the intent is selected, Dialogflow will send a
request to the webhook that is connected with the agent. We will continue with this
example in the next steps to understand how to create a customized response.

Fulfillment @ A

. Enable webhook call for this intent

I Enable webhook call for slot filling

-To dive more into specifics of an intent, Dialogflow supports follow-up
questions. To create a follow-up, simply put the follow-up question in the Response
section (similar to the Textual answer), but make sure to include a question mark at the
end of the response '?’

Then, return to the Intents tab and hover over your intent. On the right side of the
intent, there should be an 'Add follow-up intent’ button. If you click it, it will let you
create a follow-up intent to address the follow-up question. There are pre-populated
responses that Dialogflow provides. See their documentation for more info.

QY

bleeding-followup - no
bleeding-followup - yes

can-i-change-dressing

can-i-shower
custom
do-i-do-the-same-dressing-as-my-doctor
: fallback
dry-blood-stuck-to-dressing
Error (Fallback) Intent yes
hel
P no
how-can-i-stop-my-bleeding
later
how-do-i-change-my-dressing
cancel

how-do-i-keep-wound-from-drying-out

how-do-i-put-dressing-on-unseen-area

Important: You do not need to add the parameters to the Training Phrases of the
follow-up. Our mobile application does not send parameters if the previous response
it received from Hebo was in the form of a question (it checks for the question mark at
the end). This modification lets us easily use their pre-programmed follow-up intents
(meaning we don’t have to add ‘(neck) (1/1/18 at 9AM)’ to each training phrase).
There are certainly bugs that can be introduced to this format, so ideally a future
version of Hebo accesses parameter information from a database, rather than passing
information through Dialogflow.

For the question ‘Can | shower?"” we want to respond to the user 'Yes' if the
surgery took place over 48 hours ago, and '‘No’ if it has not been 48 hours since
the surgery. We therefore need to customize their response in the webhook (if
not, we would have to create two separate intents in Dialogflow, one with each
response). Using the webhook requires some minimal coding experience. The
current system is hooked up to the webhook, which means we only need to
access the index.js file (https://github.com/hebochatbot/hcii-postop/blob/
master/Chatbot/index.js) that houses the code. This file is found in the Github
folder ‘Chatbot’. The webhook takes the request and extracts relevant values to
help determine an appropriate response. For our case, we mostly look at the
timeOfSurgery variable. The webhook looks at the intent's name (intentName) to
determine how to handle the response.

// DIALOG:

// Can I shower?

case "can-i-shower":

if (isAfterFortyEightHours(timeOfSurgery, currentTime)) {

response = speech = "You can let water run over your " + surgeryArea + ", but you should avoid putting it" +

" directly in a stream of water. I always recommend a bath over a shower so that you can avoid getting your " + surg

} else {
timeOfSurgery.setDate(timeOfSurgery.getDate() + FORTY_EIGHT_HOURS_LATER);
response = speech = "Please avoid getting the wound and dressing wet for now. Wait until 48 hours after your surgery, " +
timeOofSurgery.toDateString() + " at " + formatTime(timeOfSurgery) + ". When that time comes, let me know if you nee
}
break;

case "do-i-do-the-same-dressing-as-my-doctor":

In this example, we check if it has been 48 hours after the surgery. If yes, return
one response that encourages showering; if no, return the other response where
it recommends not showering. Hebo in this case also uses the surgery time to
customize its response to the user. It will give the exact time when the patient
can shower by calculating when 48 hours after the surgery is.

Once you add this case to the index.js file, you can save it and deploy it to the
cloud so that the service uses the most updated version of the webhook. We
currently use Google Cloud Platform’s service to host our webhook. Follow this
tutorial: https://dialogflow.com/docs/getting-started/basic-fulfillment-
conversation#setup_google_cloud_project to help setup the environment for
deployment.

We use hebo-1£d69.appspot.com as our [BUCKET NAME]

> gcloud beta functions deploy heboHttp --stage-bucket
hebo-1fd69.appspot.com --trigger-http

Make sure you are in the same directory as the index.js file when you are using
the command in the Google Cloud SDK Shell (or else it won't be able to find
heboHttp).

8. Once deployed, your intent should be ready to use! You can test it through
Dialogflow's interface or even the mobile application. Remember to include the
parameters since this is how our mobile application serves the requests to
Dialogflow.

Intents CREATE INTENT (head) (1/1/18 at 9 AM) can i shower &

QY ®. See how it works in Google Assistant
&

bleeding-followup - no Agent

bleeding-followup - yes

can-i-change-dressing

(head) (1/1/18 at 9 AM) can i shower
can-i-shower

do-i-do-the-same-dressing-as-my-doctor
J Y scalp, but you

am of

dry-blood-stuck-to-dressing
Error (Fallback) Intent

help

op-my-bleeding

how-do-i-change-my-dressing can-ishower || can-shower-followup
how-do-i-keep-wound-from-drying-out

how-do-i-put-dressing-on-unseen-area

how-much-vaseline

9. That's it! You can repeat these steps to add or edit conversations for Hebo. If
you would like to read more about how to use Dialogflow, see this tutorial or feel
free to explore their other documentation for help. We did not cover contexts
(https://dialogflow.com/docs/contexts) in this tutorial, but know that this is
used to keep conversations more natural with Hebo. Adding a follow-up intent
sets up contexts for you automatically.

It is also worth mentioning that Dialogflow also supports easy export/import of agents.
This essentially means chatbots can be modular, which allows for Hebo and other
future post-operative care chatbots to scale well. Imagine starting with a baseline
amount of intents by importing a chatbot that knows about bleeding and swelling. From
there you can build out the chatbot more by importing another chatbot that knows
intents for infection.

Dialogflow is also a machine learning tool, which means training the machine can help
the performance of the chatbot even more. The Training tab for Dialogflow allows
anyone using the dashboard to view common intent matches to validate or invalidate
them. This training helps Hebo determine whether it made a mistake or correctly
identified a user’'s response.

When you click on a conversation, you can see everything the user says to Hebo. You
can see the Intent that the phrase was matched to. If the question is correctly matched
to the intent, you can click on the check mark to “Add to the intent....” and this will be
added to the training model. If it does not match up the correct intent, you should click
on the trash. As of right now, you cannot change the intent it was matched to so the
best way is to click on the trash icon and add that phrase directly to the correct intent's
training phrases. If you were to click on the circle-backslash symbol, it will add this
intent to the Default Setback Intent in which it will answer “Sorry, | didn't understand
that. Can you try asking again?”

CLOSE %

(head) (5/7/2018 at 12:25PM) can | take a shower

i 4 DAY

(head) (5/7/2018 at 12:25PM) can | take a shower

body-parts @body-parts head

date-time @sys.date-time 5/7/2018 at 12:25PM

can-i-shower

(head) (5/7/2018 at 12:26PM) how do | change my bandage

how-do-i-change-my-dressing

how-do 1ge-my-dressing how-dc

bandage

how-do-i-change-my-dressing - bandage

how-do-i-change-my-dressing-custom-followup

Sometimes users will ask questions that Hebo will not understand and it will show up as
training like the image below. This means that the Hebo was not able to match the
question to any intent. Therefore, you can click on "Click to assign” to map it to an
existing intent or you can create a new one. In the future, you can come back to see
which questions were not answered and create new intents based on these unanswered
topics.

CLOSE x

(head) (5/1/2018 at 1:48PM) when you click it

1 REQUE: 1N ED 10

(head) (5/1/2018 at 1:48PM) when you click it

@ INTENT Click to assign

There is also a History section in Training that lets you view all of the requests from
users. These tools provided by Dialogflow can help practitioners understand their
users’ questions, and whether those questions are successfully being fulfilled by Hebo.
If they are not, the practitioners can correct the mismatches in an easy-to-use
interface.

Under the Intents section, you can see the top intents that was triggered. This can
allow the doctors to know which type of questions is being asked the most. You can
also see the session flow that will map out the common conversation path. The exit %
show what percentage of the interaction with Hebo ends with a specific phrase.

Mobile Application

The repository for the mobile application is located here: https://github.com/
hebochatbot/hcii-postop/tree/master/Hebo. You can clone or download the repository
to start editing the source code. The only setup that is needed is Android Studio (or
related Android-friendly IDE). Once Android Studio is downloaded, you can open the
project (File > Open > [Locate Hebo directory] > OK)

v hcii-postop

> Chatbot
= .gitignore

Once the project is loaded, we can deploy the program to a connected mobile device.
Before this happens, you need to enable your mobile device to allow for USB
debugging. To do this, on your Android phone that you want to install Hebo:

1. Open up Settings > System > About phone

2. Scroll to Build Number and tap it 7 times

3. Return to the System page and you should now see Developer options as a tab
4. Scroll down to Debugging and enable USB debugging

AP | 7:00

Developer options

On

Debugging

USB debugging

Debug mode when USB is
connected

Your mobile device should be ready to install Hebo, but if you have issues later, you
may need to follow this guide (https://developer.android.com/studio/run/device) for
further steps. Return to Android Studio on your laptop and plug in your phone. Your
phone should identify this connection in some manner:

Connected as a media device
Touch for other USB options.

On the top right corner of Android Studio, click the » button. A window should pop-up
that identifies your Connected Device. Select your phone and click ‘OK." Android
Studio will start to build and upload Hebo to your device unless an error is identified. If

a build or compilation error occurs, there is something wrong with the code. Check the
build error(s).

Select Deployment Target

Connected Devices

Google Pixel XL (Android 7.1.2, APl 25)

[l Nexus_5_24 (Android 7.0, API 24)
Available Virtual Devices
[l Pixel API 24

Create New Virtual Device

Don't see your device?

—

If there were no errors, and Android Studio identifies the Build as successful, check
your phone to see if Hebo is now in your applications list. It should be there, so happy

demoing!

Feature

File (.java)

Description

General

MainActivity

Main file of the application:
this activity is the onCreate
function is the first that gets
fired, so it's a good place to
start tracing the code

Config

Where static variables are
located. If there are general
values that are used, include
them here to avoid “magic
numbers” and hardcoding

Onboarding

Onboarding

Activity that is fired if the user
has never used this
application before
(isUserFirstTime true)

Profile
(saving user information)

ProfileActivity

Activity that is fired after
Onboarding and if the top
right profile icon is tapped.
Allows user to update
information about his/her
surgery

DatePickerFragment

TimePickerFragment

Used to create date and time
pickers for the user’s profile

Chatbot Message Java class used to classify
(see below for more details) the types of messages Hebo

can respond with

MessagelListAdapter Adapter class that inflates the
appropriate Message

Response Java class used to classify
the response

ResponseListAdapter Adapter class that inflates the
appropriate Response

Timer Custom timer used by Hebo.
Defines what happens when
timer starts, is canceled,
finishes, etc.

Below is a list of features that were implemented for the Hi-Fi prototype. There are
likely still bugs and informalities in the code due to the time constraint of the project:

Hebo's primary feature is being a chatbot, so the core focus of the MainActivity.java file

Conversation with Hebo (Dialogflow): both text and voice are used
Visual answers that provide more information

Error recovery: if an Intent is repeated consecutively, Hebo assumes it is
misinterpreting the user’s request

Consent and permission forms

Profile of user: surgery site, date and time of surgery, and clinic
Onboarding screen to introduce the application to users

Hebo can set a timer and check back on the user (used for bleeding)

is establishing this flow. The interaction starts when the user clicks the Hebo icon
button (listenButtonOnClick). If user consent has been given, the app will start the
microphone and listen to vocal input. Once the SpeechRecognizer stops listening, it

fires the onResults function. onResults will either send the speech in its raw form (if

this is a response to a follow-up question) or prepend the parameters of ‘(body_part)

(date_time)' to the raw speech. This text is sent to Dialogflow through the sendRequest

function. Once Dialogflow returns its response, the onResult function is called. This

function is where the response from Dialogflow gets parsed and the appropriate action

is taken to display the response to the user.

As of right now, there are four possible objects to display to the user. We classify these

ways with the Message class and MessagelistAdapter:

Type

Description

MESSAGE SENT
> addTextMessage (text, false)

Message user sends to Hebo (Dialogflow)

MESSAGE HEBO TEXT
> addTextMessage (text, true)

Text response from Hebo. These messages just
contain a single item in the ResponseListAdapter

MESSAGE_HEBO VISUAL
> addVisualMessage (stringArr)

Visual response from Hebo. These messages
have an arbitrary amount of Text and Image items
in the ResponseListAdapter. stringArr refers to
the name of the visual answer that will be looked
up and displayed. In the webhook the response
should be in the format (stringArr) and in the
visual_answers.xml file, there should be a
string-array with the same name

MESSAGE_HEBO_TIMER
> addTimerMessage ()

Message with a countdown timer. Used to check
back on the user (e.g. stopping bleeding)

Visual answers are easy to add to Hebo, but may not be the most intuitive at first. In

order to summon a visual answer, we have to program the webhook to respond with a

specific text to trigger the mobile app program to go down the visual answer path

(rather than plain text). We currently use the webhook to do this because we separate

the displayText from the speech in visual answers; meaning we want Hebo to read out

something different from what it will display. We do this by setting the speech to what

Hebo will read out, and encoding displayText in the following format:
(VISUAL_ANSWER_NAME)

Where VISUAL_ANSWER_NAME is the variable name that you want to lookup in the

mobile app to figure out which visual answer is returned. The '(and ')' is what tells our

mobile app to set-up a visual answer, while the string inside is used to look up the

content of the visual answer. Once the webhook is set up, go to Hebo > app > src >

main > res > values > visual_answers.xml to add in your visual answer. You can see that
each visual answer is a <string-array> with name=VISUAL_ANSWER_NAME. The first
<item> is always the title of the visual answer. Every other <item> within the array is

either normal text or an image file name. The normal text is what text instructions the

visual answer is providing. The image file name is the image file that will be looked up

and loaded. So to create a new visual response, you mostly just have to fill in the

content of the visual response in the visual_answers.xml file in its linear order.

Note: Image files must start with '_’' to identify it as an image response (rather than
text). The program currently looks online in the Github folder (https://github.com/
hebochatbot/hcii-postop/tree/master/Hebo/app/src/main/assets) to load the images.
This means that adding an image requires:

1. Naming the file to start with "_’
2. Dragging the image file to Hebo > app > src > main > assets
3. Pushing to Github the file

If the images are not loading properly, check that the URL of the image matches
Config .VISUAL_IMAGES_URL

case "how-to-reduce-scarring - yes":

speech = "This is how much vaseline you should apply."
response = "(VASELINE_RESPONSE)";
break;

<string-array name="VASELINE RESPONSE">
<item>How much Vaseline to apply:</item>
<item>You should apply this much Vaseline! The more Vaseline, the better it is for the healing process.</item>
<item> vasel ine.jpg</item>

</string-array>

https://dialogflow.com/docs/reference/api-v2/rest/Shared.Types/
WebhookRequest

https://dialogflow.com/docs/reference/api-v2/rest/Shared.Types/
WebhookResponse

- https://github.com/dialogflow/dialogflow-android-client#android-sdk-
for-dialogflow

https://dialogflow.com/docs/reference/v1-v2-migration-guide

